
 Journal of Innovative Engineering and Research (JIER)

 Vol.- 4,Issue -2, October 2021, pp. 1-5 (5 pages)

ISSN (Online) : 2581–6357, Vol. – 4, Issue -2, 2021 @ JIER Page 1

Abstract—Several maintenance activities in today's network

infrastructures often necessitate substantial human interaction

and can be extremely complex, requiring the consideration of

several inputs to achieve effective configurations. In this regard,

this thesis provides an optimization architecture capable of

providing network administrators with effective and stable routing

configurations automatically. Traffic engineering is crucial in

assessing a network's efficiency and stability. How to deal with

traffic rerouting in the event of a network breakdown is a big

problem in traffic engineering. TEFR (Traffic Engineering for

Fault Recovery) displays rerouted traffic after a network failure.

The full flow form is used in this topology's Universal Single-link

Traffic Rerouting (USTR). At the same degree of optimality,

USTR performs better and with less complexity than other

programs, allowing all efficient network connections to be

secured. Since the maximum flow approach was used to solve the

traffic rerouting problem, it rigorously proves the correctness and

sophistication of USTR. We test USTR on real-world network

topologies with a large number of ties and nodes, and the running

time is very satisfactory. In particular, we use SDN to construct a

prototype of USTR.

Index Terms— Traffic Engineering, Software Defined

Networking, Linear Programming, Failure Recovery, Optimal

Rerouting

I. INTRODUCTION

IP-based networks are becoming the primary networking

infrastructures used for an increasing range of diverse

applications and services. This situation increased the need

for reliable and integrated resources capable of assisting

network maintenance activities and ensuring the proper

preparation of resilient network infrastructures [1]. In this

case, multiple elements must be properly calibrated and

organized to achieve appropriate network service levels.

Regardless of the numerous specific solutions available to

ensure adequate network efficiency, the efficient

configuration of routing protocols remains critical in the

networking sector. Indeed, correct routing configurations are

needed to increase network resource utilization while also

providing upper-layer protocols, software, and overlay

systems with a reliable, resilient, and optimized

communication infrastructure. Many autonomous systems

(ASes) now depend on traffic engineering (TE) to pick routes

that make the most use of their network resources. This is

especially significant considering the high cost of network

infrastructure and the fierce competition in the Internet ISP

industry. Many experiments have been inspired by the

relevance of traffic engineering in recent years, and several

traffic engineering algorithms have recently been proposed.

The architecture of traffic engineering algorithms is heavily

influenced by traffic characteristics. Unfortunately, although

most ASes' traffic demand is relatively steady most of the

time, there are times when traffic is highly volatile, with

unexpected traffic surges that ramp up very rapidly, leaving

little time for a traffic engineering algorithm to re-compute or

adapt. Nowadays, there is an increase in the number of

distributed network apps and utilities, and efficiency is an

important factor in this. This clustered application place

greater demands on network efficiency, such as lower packet

delay. Various search engines, e-commerce platforms, and

video gaming, for example, suffer from content loss as

network latency increases. Regardless of network faults,

many traffic engineering topologies are used to ensure

network efficiency. However, to ensure continuous QoS,

network success must be immune to network errors. As a

result, we suggest the Universal Single-link Traffic Rerouting

(USTR) solution, which is based on the maximal flow method

to compute an optimum BPT. USTR produces an optimum

solution in the operating time of where is a divergence from

the optimal and cgap is the ratio of the network's maximal

potential to minimal capacity. When all have the same degree

of optimality, the numerical complexity of USTR is one or

two orders of magnitude smaller than that of LPTR. We

rigorously prove the feasibility and accuracy of USTR, which

transforms the problem of computing an optimum BPT for a

connection on a given topology and a given traffic vector into

the problem of computing a maximum flow in a certain flow

network derived from certain technical methods, since it is the

first time it has been used to solve the single-link failure

problem. Extensive trials and tests are carried out to validate

the efficacy of our method. Since unified TE is commonly

used in practice, we use software defined networking (SDN)

technologies to execute our USTR solution, in which the

controller has a global network view and configures all

subordinate switches. Open-Daylight (ODL) is a shared open

source SDN controller that supports Open Flow. This allows

the ODL controller to manage not only Open Flow switches

but also standard routers (switches) that follow the Netconf

protocol. As a result, we implement our USTR algorithm in an

ODL controller and pre-install BPTs using label forwarding

An Analytical for Traffic Engineering

Techniques in Software Defined Networks
PRAGATI GANDHI

1
, NEETU GYANCHANDANI

1
, SANTOSH PAWAR

2
, RITESH YADAV

2

1
 J. D. College of Engineering & Management, Nagpur 441501, India

2
School of Engineering, Dr. A. P. J. Abdul Kalam University, Indore 452016, India

Corresponding Author Email: gandhipragati92@gmail.com

 Journal of Innovative Engineering and Research (JIER)

 Vol.- 4,Issue -2, October 2021, pp. 1-5 (5 pages)

ISSN (Online) : 2581–6357, Vol. – 4, Issue -2, 2021 @ JIER Page 2

technology. The following are the paper's contributions.

We suggest USTR for calculating optimum BPTs

effectively. When all have the same degree of optimality, the

numerical complexity of USTR is one or two orders of

magnitude smaller than that of LPTR.

We rigorously prove the viability and correctness of USTR.

Extensive trials and tests are carried out to validate the

efficacy of our processes.

 Specifically, we use SDN to incorporate and validate the

USTR prototype. It is compatible with OpenFlow, MPLS, and

IP networks.

II. LITERATURE REVIEW

In this paper [5] the author suggests Universal

Single-interface Traffic Rerouting, a highly effective traffic

rerouting method for dealing with an ideal BPT for a link on a

given topology and a given traffic vector. USTR will work out

a (1+)-optimal BPT that has an indistinguishable dimension

of optimality from LPTR. In terms of TE implementation,

USTR is comparable to LPTR and much superior to CSPF. In

terms of processing time, USTR is a couple of requests faster

than LPTR and almost equal to CSPF. USTR's running time is

entirely justified in order to secure all links in a TE interim. In

this case, the developer employs SDN to run a USTR model

and test its execution. The controller is ODL since it can

operate in OpenFlow, MPLS, and IP networks. ODL uses

VLAN ID to perform name sending in the reinforcement

guiding knowledge plane. IP fast reroute techniques are used

in this paper [6] to recover bundles in the information plane

after connectivity failures. The previous analysis included

mechanisms forensuring disappointment recovery from at

most two-connect disappointments. We create an IP fast

reroute strategy that utilizes proven curve disjoint spreading

over trees to ensure recovery from up to (k-1) device failures

in a k-edge-connected network. Since bend disjoint traversing

trees can be built in sub-quadratic time to the extent of the

network, our methodology is extremely adaptable. Using

exploratory outcomes, we show that using circular section

disjoint crossing trees to recover from different

disappointments decreases way more than previously proven

approaches. If a switch or a link fails in a circuit exchanging

or package exchanging network, the parcels that are passing

through the failed connection, path, or switch are lost and

dropped before the network self-re-meets, regardless of

whether there is a substitute path keeping a strategic distance

from or bypassing the network failure. During this time, the

specific targets would be inaccessible from the source,

causing network traffic and degrading network efficiency

parameters. The network re-merges phase necessitates a

significant amount of energy ranging between a few

milliseconds to several seconds. To address this issue, the

Internet Engineering Task Force (IETF) created the IP Fast

ReRoute (IPFRR) framework [7]. Many steering conventions

are created to recover a network from such a network failure

using the IPFRR system. Strategies for "the network structure

problem with availability prerequisites" are considered in this

paper [8]. These ILP- and multi-commodity stream-based

strategies design a low-cost network (from the start) that is

ready to transmit requests without clogging under a specified

set of disappointment circumstances, each of which includes a

large number of communication disappointments. Following

two edge disappointments, a few proposals for providing

networks have been suggested. In general, these do not fix

anticipated clog (other than by multiplying limits where

streams cover). Furthermore, they do not necessarily add up

to disappointments at a larger caliber. A few articles have

been proposed to extend the development of disjoint trees.

This investigation [9] demonstrates that a solution occurs

consistently for all twofold edge disillusionments as long as

the network graph is 3-related, and a heuristic is given.

Another option for dealing with disillusionment in

pre-configured support routes is to reconfigure the paths. This

paper discusses and outlines such a theory as the preface to

our arrangements. Reconfiguration offers an amazing

structure since the fortification course for the second failed

edge is chosen subject to accurately learning what has already

tumbled (instead of dealing with every possible

dissatisfaction). Reconfiguration strategies, in like fashion,

add up to more viable to higher-assortment annoyances.

Regardless, as our most cynical condition assures, the focus is

on assessment and structure of reconfiguration designs

provided a settled veiled network. The study in progress also

considers re-provisioning of support paths, but only up to the

association stage. There is a large body of literature on

"p-cycles." A p-cycle is a preconfigured cycle of unit limit

constructed from as much of the network as possible. It

provides fast remaking of dissatisfactions on the loop in the

same way as "straddling" ranges of both end-centers around

the cycle do. The primary framework was suggested for single

disillusionments [10] however, it has since been expanded to

twofold dissatisfactions and SRG (shared peril gathering)

frustrations. Although one of our arrangements additionally

makes use of pulses, it differs in a significant way from

p-cycles. As far as everyone is concerned, there is no p-cycle

progression ensuring blockage-free modifying for an arbitrary

number of annoyances. Furthermore, while other papers on

p-cycles suggest a set of direct tasks (ILPs) to locate "perfect"

cycles in a given network, we propose a simple (and nearly

perfect) plan of edges that can be integrated with assured

execution and without an estimate. In this paper [11], an ILP

is presented that gives a basic stream errand (with stream part)

and a "stream redistribution" plot that guarantees no blockage

with k frustrations under the following condition: provided

any set F of edges with maximum scale usage up to k, all

streams can be guided on F without stopping. This work is

similar to, but not identical to, ours; while we suggest a

network strategy, they provide confirmation on a network

satisfying a pre-condition without precisely holding an eye on

the best way to assemble such a system. In this paper [12], a

fast-reroute scheme is used to build up a reinforcement path

when interface disappointments occur; however, it is not

 Journal of Innovative Engineering and Research (JIER)

 Vol.- 4,Issue -2, October 2021, pp. 1-5 (5 pages)

ISSN (Online) : 2581–6357, Vol. – 4, Issue -2, 2021 @ JIER Page 3

effective for various disappointments that occur as often as

possible in spine networks. Consider a convention for

reconfiguring impaired reinforcement ways after a

communication failure, thus increasing survivability from a

subsequent failure. Switch-to-switch connections in the spine

network carry traffic from various start-to-finish

relationships. If a device failure occurs, any of the

associations that are navigating it the failure links also fizzle.

The primary focus is on recouping start to finish partnerships

using way protection technologies. Even though insurance is

successful in asset use, it has the drawbacks of higher

multifaceted type, low adaptability, and long recuperation

periods necessitate. In link stability, MPLS fast reroute is

used to pre-process exchange ways to deal with double

connection disappointments, which are becoming

increasingly complex. Since a first connection

disappointment may affect the reinforcement method of the

second connection, the pre-processed reinforcement methods

for each connection will need to consider any possible

combination of disappointments from different connections.

The authors of this paper [13] describe the best method for

developing ideal sets of trees for weighted organized maps.

Partitions incidence edges to each hub into "insurance charts,"

one of which is available after a disappointment: the first is

handled by guarantee graphs, and the second by disjoint trees.

Considers the improvement problem of locating the greatest

number of preconfigured FRR reinforcement methods in the

following case. Assume that a second disappointment, e2,

happens along the reinforcement path of a first fizzled tip, e1,

which is corrected using e2. At that point, this reinforcing

method should rule out e1. A heuristic is given.

III. PROPOSED METHODOLOGY

This section discusses the system overview in detail,

proposed algorithm, and mathematical model of the proposed

system.

A. System Overview

Figure 1. shows the architecture of the proposed system. The

explanation of the system is as follows:

 Network Generation - Initially network is generated

vertices/nodes are connected with the edges.

 Path Generation -After generating the source and sink

node. Generate all possible paths from source to sink

node.

 Get Shortest Path- Find the shortest path from all

generated paths from source to sink node.

 Key generation and distribution - Key Generation Center

generates the keys and distributes the keys to each

node. Perform the route generations from the source to

the sink node.

 Data Encryption - Data is generated at each node. After

generating the data, data is encrypted at each node by

using the ECC algorithm.

 Energy Consumption - Calculate how much energy is

consumed for each sensor node along the shortest path.

 Data Authentication - After evaluating the hash value at

the source node, the sink node verifies the

authentication of data.

 Data Decryption –The Sink node receives the data from

the source node and decrypts the data by the

appropriate key.

Figure 1: System Architecture

B. System Implementation

1) Mathematical Formulation

System S is represented as

S= {N, S, D, P, Sp, K, d}

 Deploy nodes

N = {N1, N2, ,Nn}

N is set of all deployed nodes.

 Create Source

S = {S1, S2…Sn}

Where S is a set of all Sources.

 Create Sink Node

D = {D1, D2... Dn}

Where D is a set of all sink nodes.

 Find all Paths

P = {P1, P2,....,Pn}

Where P is a set of all Paths.

 Select Shortest Path

Sp = {Sp1, Sp2, Sp3... Spn}

 Journal of Innovative Engineering and Research (JIER)

 Vol.- 4,Issue -2, October 2021, pp. 1-5 (5 pages)

ISSN (Online) : 2581–6357, Vol. – 4, Issue -2, 2021 @ JIER Page 4

Where Sp is the set of all Shortest Path.

 Generate the keys for authentication

K = {K1, K2... Kn}

Where K is a set of all Keys.

 Send the data from source to sink node.

d= {d1, d2, d3 ...dn}

Where F is a set of all data transmitted.

2) Proposed Algorithm

 Create a network graph as Graph g(v,e) where; V are

vertices/nodes and E are edges.

 Select Source and sink node from all sensor nodes.

 Generate all paths from source to sink node.

 Select the Shortest path from all generated paths.

 Generate public/private keys and distributes them to the

source and the sink node.

 Generate the data at the source and send it to the sink

node via the shortest path.

 Encrypt the data with the private key.

 Calculate the energy consumption of each node which

are present in the shortest path.

 Decrypt the private key and Authenticate received data

at the sink node.

 If energy is going to die of sensor nodes from the path,

then select the alternate path.

 Send the data from source to sink node through the

alternate path and calculate energy consumption.

 Again energy expires of sensor nodes of alternate path.

Description:

The above Algorithm describes the steps of the proposed

system. Initially, the network is created with sensor nodes,

source, and sink nodes. Then we generate all paths from

source to sink node and select the shortest path for data

sending purposes. Sensor nodes are not efficient if energy

consumption is more.

Therefore, the system selects the alternate path for

communication between sources and sink nodes together

calculating energy consumption and residual energy levels at

each sensor node. The encryption algorithm encrypts the data

by using the ECC algorithm with the private key. Data is

verified by its hash value. Only verified data is accepted by

the sink node. The decryption of the data is performed at

receiving sensor node with the appropriate keys. Again sensor

nodes of the alternate shortest paths are expected to get

expired and finally we trigger the procedure of sink

relocation.

3) ECC Algorithm

 Sender and Receiver

Calculate edB = S = (S1, S2)

 Sender sends a message M E to Receiver as follows:

Calculate (S1 * S2) mod N = K

Calculate K * M = C, and send C to Sender.

 Receiver receives C and decrypts it as follows:

Calculate (S1 * S2)modN = K

Calculate (K-1)modN

(Where N = E)

 K-1*C = K-1*K*M = M

IV. EXPERIMENTAL RESULTS

The Experiment is conducted on i5 machine, with 8 GB

RAM and 256 GB SSD. The experiment is being done

using the JUNG Simulator and the entire implementation

has been done using java language. The results of the

experiment are obtained based on 3 parameters which are

time utilization, energy utilization, and residual energy or

network lifetime. The results of the experiment are shown

in the following graphs:

V. CONCLUSION

The study presented here is a review of existing literature and

researches conducted in the area of traffic engineering. Some

of the methods are applicable for traditional network structure

whereas some are related to the techniques developed for

SDN. The challenges related to the implementation and future

enhancement required for the up-gradation of the systems are

also discussed. Software Defined Networking (SDN) is a

promising approach in the networking paradigm. It

distinguishes the control plane of the network from the plane

which is used for data forwarding. It enables and provides the

solution for many problems in the traditional network

architecture. It reduces the complexity in network

management by managing the network centrally. It also

 Journal of Innovative Engineering and Research (JIER)

 Vol.- 4,Issue -2, October 2021, pp. 1-5 (5 pages)

ISSN (Online) : 2581–6357, Vol. – 4, Issue -2, 2021 @ JIER Page 5

presents the network programmability and providing a global

view of a network and its state.

REFERENCES

[1] T. Elhourani, A. Gopalan, and S. Ramasubramanian, “Ip

fast rerouting for multi-link failures,” in IEEE

INFOCOM 2014 - IEEE Conference on Computer

Communications, April 2014, pp. 2148–2156.

[2] Q. She, X. Huang, and J. P. Jue, “Survivable routing for

segment protection under multiple failures,” in

OFC/NFOEC 2007, March 2007, pp. 1–3.

[3] H. Kim, M. Schlansker, J. R. Santos, J. Tourrilhes, Y.

Turner, and N. Feamster, “Coronet: Fault tolerance for

software defined networks,” in ICNP ’12, Oct 2012, pp.

1–2.

[4] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka,

and T. Turletti, “A survey of software-defined

networking: Past, present, and future of programmable

networks”, IEEE Commun. Surv. & Tutor., vol. 16, no. 3,

pp. 1617–1634, 2014.

[5] Anmin Xu, Jun Bi, Baobao Zhang, Tianran Xu, Jianping

Wu, "USTR: A High-performance Traffic Engineering

Approach for the Failed Link", 38th International

Conference on Distributed Computing Systems, IEEE

2018.

[6] Theodore Elhourani, Abishek Gopalan, Srinivasan

Ramasubramanian, “IP Fast Rerouting for MultiLink

Failures”, IEEE/ACM Transactions on Networking

Volume: 24, Issue: 5, October 2016.

[7] Mahesh Bhor, Deepak Chatrabhuj Karia, “Network

recovery using IP fast rerouting for multi link failures”,

International Conference on Intelligent Computing and

Control (I2C2), IEEE Xplore: March 2018.

[8] Rakesh K. Sinha, Funda Ergun, Kostas N. Oikonomou,

K. K. Ramakrishnan, “Network Design for Tolerating

Multiple Link Failures Using Fast Re-Route (FRR)”,

IEEE , 2014.

[9] Ajay Todimala, K. K. Ramakrishnan and Rakesh K.

Sinha, “Cross-layer Reconfiguration for Surviving

Multiple-link Failures in Backbone Networks”, IEEE,

2009.

[10] Rozita Yunos, Siti Arpah Ahmad, Noorhayati Mohamed

Noor, Raihana Md Saidi, Zarina Zaino, “Analysis of

Routing Protocols of VoIP VPN over MPLS Network”,

2013 IEEE Conference on Systems, Process & Control

(ICSPC2013), 13 - 15 December 2013

[11] Cezary ˙ Zukowski, Artur Tomaszewski, Michał Pióro,

David Hock, Matthias Hartmann and Michael Menth,

“Compact node-link formulations for the optimal single

path MPLS Fast Reroute layout”, Advances In

Electronics And Telecommunications, VOL. 2, NO. 3,

SEPTEMBER 2011

[12] Maria Hadjiona, Chryssis Georgiou and Vasos Vassiliou,

“A Hybrid Fault-Tolerant Algorithm for MPLS

Networks”, Department of Computer Science University

of Cyprus.

[13] Suksant Sae Lor, Redouane Ali, Raul Landa, and Miguel

Rio, “Recursive Loop- Free Alternates for Full

Protection Against Transient Link Failures, IEEE, 2010.

